Symmetry-Break in Voronoi Tessellations

نویسنده

  • Valerio Lucarini
چکیده

We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the OPEN ACCESS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From symmetry break to Poisson point process in 2D Voronoi tessellations: the generic nature of hexagons

We bridge the properties of the regular square and honeycomb Voronoi tessellations of the plane to those of the Poisson-Voronoi case, thus analyzing in a common framework symmetry-break processes and the approach to uniformly random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations generated by points whose regular positions is perturbed through...

متن کامل

Capacity-Constrained Voronoi Tessellations: Computation and Applications

Voronoi tessellations specify a partition of a given space according to a set of sites where all points in that space are assigned to the closest site. Capacity-constrained Voronoi tessellations are special cases of Voronoi tessellations in which the region of each site has a predefined area. For example, the capacity constraint could state that each region in a Voronoi tessellation must have t...

متن کامل

Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations

A new algorithm, featuring overlapping domain decompositions, for the parallel construction of Delaunay and Voronoi tessellations is developed. Overlapping allows for the seamless stitching of the partial pieces of the global Delaunay tessellations constructed by individual processors. The algorithm is then modified, by the addition of stereographic projections, to handle the parallel construct...

متن کامل

Percolation on random Johnson–Mehl tessellations and related models

We make use of the recent proof that the critical probability for percolation on random Voronoi tessellations is 1/2 to prove the corresponding result for random Johnson–Mehl tessellations, as well as for twodimensional slices of higher-dimensional Voronoi tessellations. Surprisingly, the proof is a little simpler for these more complicated models.

متن کامل

Simulation of the typical Poisson - Voronoi - Cox - Voronoi cell

We consider stationary Poisson-Voronoi tessellations (PVT) in the Euclidean plane and study properties of Voronoi tessellations induced by linear Poisson processes on the edges of the PVT. We are especially interested in simulation algorithms for the typical cell. Two different simulation algorithms are introduced. The first algorithm directly simulates the typical cell whereas the second algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Symmetry

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009